Photoemission from Optoelectronic Materials and Their Nanostructures

Print on Demand | Lieferzeit: Print on Demand - Lieferbar innerhalb von 3-5 Werktagen I
Alle Preise inkl. MwSt. | Versandkostenfrei
Nicht verfügbar Zum Merkzettel
Gewicht:
665 g
Format:
244x165x28 mm
Beschreibung:

Professor K. P. Ghatak is the First Recipient of the Degree of Doctor of Engineering of Jadavpur University in 1991 since the University inception in 1955 and in the same year he received the prestigious Indian National Science Academy award. He joined as Lecturer in the Institute of Radio Physics and Electronics of the University of Calcutta in 1983, Reader in the Department of Electronics and Telecommunication of Jadavpur University in 1987 and Professor in the Department of Electronic Science of the University of Calcutta in 1994 respectively. His present research interest is nanostructured science and technology. He is the principal co-author of more than 200 research papers on Semiconductor and Nanoscience in eminent peer-reviewed International Journals and more than 50 research papers in the Proceedings of the International Conferences held in USA and many of his papers are being cited many times. Professor Ghatak is the invited Speaker of SPIE, MRS, etc. and is the referee of different eminent Journals.
This monograph investigates photoemission from optoelectronic materials and their nanostructures. It contains open-ended research problems which form an integral part of the text and are useful for graduate courses as well as aspiring Ph.D.'s and researchers.
First book devoted totally to photoemission from optoelectronic materials and their nanostructures
Fundamentals of Photoemission from Wide Gap Materials.- Fundamentals of Photoemission from Quantum Wells in Ultrathin Films and Quantum Well Wires of Various Nonparabolic Materials.- Fundamentals of Photoemission from Quantum Dots of Various Nonparabolic Materials.- Photoemission from Quantum Confined Semiconductor Superlattices.- Photoemission from Bulk Optoelectronic Materials.- Photoemission under Quantizing Magnetic Field from Optoelectronic Materials.- Photoemission from Quantum Wells in Ultrathin Films, Quantum Wires, and Dots of Optoelectronic Materials.- Photoemission from Quantum Confined Effective Mass Superlattices of Optoelectronic Materials.- Photoemission from Quantum Confined Superlattices of Optoelectronic Materials with Graded Interfaces.- Review of Experimental Results.- Conclusion and Future Research.
Photoemission from Optoelectronic Materials and Their Nanostructures is the first monograph to investigate the photoemission from low-dimensional nonlinear optical, III-V, II-VI, GaP, Ge, PtSb2, zero-gap, stressed, bismuth, carbon nanotubes, GaSb, IV-VI, Pb1-xGexTe, graphite, Te, II-V, ZnP2, CdP2 , Bi2Te3, Sb, and IV-VI materials. The investigation leads to a discussion of III-V, II-VI, IV-VI and HgTe/CdTe quantum confined superlattices, and superlattices of optoelectronic materials. Photo-excitation changes the band structure of optoelectronic compounds in fundamental ways, which has been incorporated into the analysis of photoemission from macro- and micro-structures of these materials on the basis of newly formulated electron dispersion laws that control the studies of quantum effect devices in the presence of light. The importance of the measurement of band gap in optoelectronic materials in the presence of external photo-excitation has been discussed from this perspective. This monograph contains 125 open-ended research problems which form an integral part of the text and are useful for graduate courses on modern optoelectronics in addition to aspiring Ph.D. s and researchers in the fields of materials science, computational and theoretical nano-science and -technology, semiconductor optoelectronics, quantized-structures, semiconductor physics and condensed matter physics. In recent years, with the advent of fine line lithographical methods, molecular beam epitaxy, organometallic vapour phase epitaxy and other experimental techniques, low dimensional structures having quantum confinement in one, two and three dimensions (such as ultrathin films, inversion layers, accumulation layers, quantum well superlattices, quantum well wires, quantum wires superlattices, magneto-size quantizations, and quantum dots) have attracted much attention not only for their potential in uncovering new phenomena in nanoscience and technology, but also for their interesting applications in the areas of quantum effect devices. In ultrathin films, the restriction of the motion of the carriers in the direction normal to the film leads to the quantum size effect and such systems find extensive applications in quantum well lasers, field effect transistors, high speed digital networks and also in other quantum effect devices. In quantum well wires, the carriers are quantized in two transverse directions and only one-dimensional motion of the carriers is allowed.
The available books on semiconductor science and technology cannot afford to devote even an entire chapter to photoemissions from optoelectronic materials, although its importance in photoemission spectroscopy is extremely well known. This book deals totally with the photoemission from optoelectronic materials and their nanostructures (ultrathin films, quantum wires, superlattices, etc.).

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.