Electron Backscatter Diffraction in Materials Science
- 0 %
Der Artikel wird am Ende des Bestellprozesses zum Download zur Verfügung gestellt.

Electron Backscatter Diffraction in Materials Science

 eBook
Sofort lieferbar | Lieferzeit: Sofort lieferbar I
ISBN-13:
9780387881362
Veröffentl:
2010
Einband:
eBook
Seiten:
403
Autor:
Adam J. Schwartz
eBook Typ:
PDF
eBook Format:
Reflowable eBook
Kopierschutz:
Digital Watermark [Social-DRM]
Sprache:
Englisch
Beschreibung:

Providing the fundamental basis for electron backscatter diffraction in materials science, this book analyzes the current state of both hardware and software, and gives examples of applications of electron backscatter diffraction to a wide-range of materials.

Electron backscatter diffraction is a very powerful and relatively new materials characterization technique aimed at the determination of crystallographic texture, grain boundary character distributions, lattice strain, phase identification, and much more. The purpose of this book is to provide the fundamental basis for electron backscatter diffraction in materials science, the current state of both hardware and software, and illustrative examples of the applications of electron backscatter diffraction to a wide-range of materials including undeformed and deformed metals and alloys, ceramics, and superconductors.

The text has been substantially revised from the first edition, and the authors have kept the format as close as possible to the first edition text. The new developments covered in this book include a more comphrensive coverage of the fundamentals not covered in the first edition or other books in the field, the advances in hardware and software since the first edition was published, and current examples of application of electron backscatter diffraction to solve challenging problems in materials science and condensed-matter physics.

List of Contributors. 1. The Development of Automated Diffraction in Scanning and Transmission Electron Microscopy; D.J. Dingley. 2. Theoretical Framework for Electron Backscatter Diffraction; V. Randle. 3. Representation of Texture in Orientation Space; K. Rajan. 4. Rodriques-Frank Representations of Crystallographic Texture; K. Rajan. 5. Fundamentals of Automated EBSD; S.I. Wright. 6. Studies on the Accuracy of Electron Backscatter Diffraction Measurements; M.C. Demirel, B.S. El-Dasher, B.L. Adams, A.D. Rollett. 7. Phase Identification Using Electron Backscatter Diffraction in the Scanning Electron Microscope; J.R. Michael. 8. Three-Dimensional Orientation Imaging; D.J. Jensen. 9. Automated Electron Backscatter Diffraction: Present State and Prospects; R.A. Schwarzer. 10. EBSD: Buying a Systems; A. Eades. 11. Hardware and Software Optimization for Orientation Mapping and Phase Identification; P.P. Camus. 12. An Automated EBSD Acquisition and Processing System; P. Rolland, K.G. Dicks. 13. Advanced Software Capabilities for Automated EBSD; S.I. Wright, D.P. Field, D.J. Dingley. 14. Strategies for Analysis of EBSD Datasets; W.E. King, J.S. Stölken, M. Kumar, A.J. Schwartz. 15. Structure-Property Relations: EBSD-Based Materials-Sensitive Design; B.L. Adams, B.L. Henrie, L.L. Howell, R.J. Balling. 16. Use of EBSD Data in Mesoscale Numerical Analyses; R. Becker, H. Weiland. 17. Characterization of Deformed Microstructures; D.P. Field, H. Weiland. 18. AnisotropicPlasticity Modeling Incorporating EBSD Characterization of Tantalum and Zirconium; J.F. Bingert, G.C. Kaschner, T.A. Mason, P.J. Maudlin, G.T. Gray III. 19. Measuring Strains Using Electron Backscatter Diffraction; A.J. Wilkinson. 20. Mapping Residual Plastic Strain in Materials Using Electron Backscatter Diffraction; E.M. Lehockey, Yang-Pi Lin, O.E. Lepik. 21.EBSD Contra TEM Characterization of a Deformed Aluminum Single Crystal; Xiaoxu Huang, D.J. Jensen. 22. Continuous Recrystallization and Grain Boundaries in a Superplastic Aluminum Alloy; T.R. McNelley. 23. Analysis of Facets and Other Surfaces Using Electron Backscatter Diffraction; V. Randle. 24. EBSD of Ceramic Materials; J.K. Farrer, J.R. Michael, C.B. Carter. 25. Grain Boundary Character Based Design of Polycrystalline High Temperature Superconducting Wires; A. Goyal. Index.

Electron backscatter diffraction is a very powerful and relatively new materials characterization technique aimed at the determination of crystallographic texture, grain boundary character distributions, lattice strain, phase identification, and much more. The purpose of this book is to provide the fundamental basis for electron backscatter diffraction in materials science, the current state of both hardware and software, and illustrative examples of the applications of electron backscatter diffraction to a wide-range of materials including undeformed and deformed metals and alloys, ceramics, and superconductors.

The text has been substantially revised from the first edition, and the authors have kept the format as close as possible to the first edition text. The new developments covered in this book include a more comphrensive coverage of the fundamentals not covered in the first edition or other books in the field, the advances in hardware and software since the first edition was published, and current examples of application of electron backscatter diffraction to solve challenging problems in materials science and condensed-matter physics.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.