Physics of Dielectrics for the Engineer
- 0 %
Der Artikel wird am Ende des Bestellprozesses zum Download zur Verfügung gestellt.

Physics of Dielectrics for the Engineer

 PDF
Sofort lieferbar | Lieferzeit: Sofort lieferbar I
ISBN-13:
9780444601803
Veröffentl:
2012
Einband:
PDF
Seiten:
188
Autor:
Roland Coelho
eBook Typ:
PDF
eBook Format:
PDF
Kopierschutz:
Adobe DRM [Hard-DRM]
Sprache:
Englisch
Beschreibung:

Physics of Dielectrics for the Engineer is a systematic attempt to clarify and correlate advanced concepts underlying the physics of dielectrics. It reviews the basics of electrostatics, the different models for the polarizability of atoms and molecules, and the macroscopic permittivity. It also discusses the behavior of matter in an alternating field in relation to complex permittivity, the interactions between field and matter, dissipative effects under high electric fields, the wide-gap semiconductor model, the types of charge carriers, and the main disruptive processes. Organized into three parts encompassing 12 chapters, this volume begins with an overview of the physical concepts involved in the behavior of insulating materials subjected to high electric fields. It then explores the potential of a group of charges, and dipoles induced in an applied field. The book explains statistical theories of dipole orientation in an applied field and theories relating molecular and macroscopic quantities. The propagation of an electromagnetic wave, dipole relaxation of defects in crystal lattices, and space-charge polarization and relaxation are also discussed. The book explains the uni-dimensional polar lattice, intrinsic and impurity conduction in wide-gap semiconductors, thermal runaway, and collision breakdown. Many problems with corresponding solutions are included to assist the reader. This book will benefit electrical engineers, as well as electrical engineering students, scientists, and technicians.
Physics of Dielectrics for the Engineer is a systematic attempt to clarify and correlate advanced concepts underlying the physics of dielectrics. It reviews the basics of electrostatics, the different models for the polarizability of atoms and molecules, and the macroscopic permittivity. It also discusses the behavior of matter in an alternating field in relation to complex permittivity, the interactions between field and matter, dissipative effects under high electric fields, the wide-gap semiconductor model, the types of charge carriers, and the main disruptive processes. Organized into three parts encompassing 12 chapters, this volume begins with an overview of the physical concepts involved in the behavior of insulating materials subjected to high electric fields. It then explores the potential of a group of charges, and dipoles induced in an applied field. The book explains statistical theories of dipole orientation in an applied field and theories relating molecular and macroscopic quantities. The propagation of an electromagnetic wave, dipole relaxation of defects in crystal lattices, and space-charge polarization and relaxation are also discussed. The book explains the uni-dimensional polar lattice, intrinsic and impurity conduction in wide-gap semiconductors, thermal runaway, and collision breakdown. Many problems with corresponding solutions are included to assist the reader. This book will benefit electrical engineers, as well as electrical engineering students, scientists, and technicians.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.