Der Artikel ist weiterhin als ^^OTHERCONDITION^^ verfügbar.
Autor: John Gower
ISBN-13: 9780470973202
Einband: E-Book
Seiten: 480
Sprache: Englisch
eBook Typ: PDF
eBook Format: E-Book
Kopierschutz: Adobe DRM [Hard-DRM]
Systemvoraussetzungen
Der Artikel wird am Ende des Bestellprozesses zum Download zur Verfügung gestellt.

Understanding Biplots

Geben Sie Ihre Bewertung ab!  
Wir verlosen jeden Monat unter allen freigegebenen Rezensionen
3 Gutscheine im Wert von 20 Euro. Teilnahmebedingungen
1
Biplots are a graphical method for simultaneously displaying twokinds of information; typically, the variables and sample unitsdescribed by a multivariate data matrix or the items labelling therows and columns of a two-way table. This book aims to popularizewhat is now seen to be a useful and reliable method for thevisualization of multidimensional data associated with, forexample, principal component analysis, canonical variate analysis,multidimensional scaling, multiplicative interaction and varioustypes of correspondence analysis.
Understanding Biplots:

* Introduces theory and techniques which can be applied toproblems from a variety of areas, including ecology, biostatistics,finance, demography and other social sciences.

* Provides novel techniques for the visualization ofmultidimensional data and includes data mining techniques.

* Uses applications from many fields including finance,biostatistics, ecology, demography.

* Looks at dealing with large data sets as well as smallerones.

* Includes colour images, illustrating the graphicalcapabilities of the methods.

* Is supported by a Website featuring R code anddatasets.

Researchers, practitioners and postgraduate students ofstatistics and the applied sciences will find this book a usefulintroduction to the possibilities of presenting data in informativeways.
4
Preface.

1 Introduction.

1.1 Types of biplots.

1.2 Overview of the book.

1.3 Software.

1.4 Notation.

2 Biplot basics.

2.1 A simple example revisited.

2.2 The biplot as a multidimensional scatterplot.

2.3 Calibrated biplot axes.

2.4 Refining the biplot display.

2.5 Scaling the data.

2.6 A closer look at biplot axes.

2.7 Adding new variables: the regression method.

2.8 Biplots and large data sets.

2.9 Enclosing a configuration of sample points.

2.10 Buying by mail order catalogue data set revisited.

2.11 Summary.

3 Principal component analysis biplots.

3.1 An example: risk management.

3.2 Understanding PCA and constructing its biplot.

3.3 Measures of fit for PCA biplots.

3.4 Predictivities of newly interpolated samples.

3.5 Adding new axes to a PCA biplot and defining their predictivities.

3.6 Scaling the data in a PCA biplot.

3.7 Functions for constructing a PCA biplot.

3.8 Some novel applications and enhancements of PCA biplots.

3.9 Conclusion.

4 Canonical variate analysis biplots.

4.1 An example: revisiting the Ocotea data.

4.2 Understanding CVA and constructing its biplot.

4.3 Geometric interpretation of the transformation to the canonical space.

4.4 CVA biplot axes.

4.5 Adding new points and variables to a CVA biplot.

4.6 Measures of fit for CVA biplots.

4.7 Functions for constructing a CVA biplot.

4.8 Continuing the Ocotea example.

4.9 CVA biplots for two classes.

4.10 A five-class CVA biplot example.

4.11 Overlap in two-dimensional biplots.

5 Multidimensional scaling and nonlinear biplots.

5.1 Introduction.

5.2 The regression method.

5.3 Nonlinear biplots.

5.4 Providing nonlinear biplot axes for variables.

5.5 A PCA biplot as a nonlinear biplot.

5.6 Constructing nonlinear biplots.

5.7 Examples.

5.8 Analysis of distance.

5.9 Functions AODplot and PermutationAnova.

6 Two-way tables: biadditive biplots.

6.1 Introduction.

6.2 A biadditive model.

6.3 Statistical analysis of the biadditive model.

6.4 Biplots associated with biadditive models.

6.5 Interpolating new rows or columns.

6.6 Functions for constructing biadditive biplots.

6.7 Examples of biadditive biplots: the wheat data.

6.8 Diagnostic biplots.

7 Two-way tables: biplots associated with correspondence analysis.

7.1 Introduction.

7.2 The correspondence analysis biplot.

7.3 Interpolation of new (supplementary) points in CA biplots.

7.4 Other CA related methods.

7.5 Functions for constructing CA biplots.

7.6 Examples.

7.7 Conclusion.

8 Multiple correspondence analysis.

8.1 Introduction.

8.2 Multiple correspondence analysis of the indicator matrix.

8.3 The Burt matrix.

8.4 Similarity matrices and the extended matching coefficient.

8.5 Category-level points.

8.6 Homogeneity analysis.

8.7 Correlational approach.

8.8 Categorical (nonlinear) principal component analysis.

8.9 Functions for constructing MCA related biplots.

8.10 Revisiting the remuneration data: examples of MCA and categorical PCA biplots.

9 Generalized biplots.

9.1 Introduction.

9.2 Calculating inter-sample distances.

9.3 Constructing a generalized biplot.

9.4 Reference system.

9.5 The basic points.

9.6 Interpolation.

9.7 Prediction.

9.8 An example.

9.9 Function for constructing generalized biplots.

10 Monoplots.

10.1 Multidimensional scaling.

10.2 Monoplots related to the covariance matrix.

10.3 Skew-symmetry.

10.4 Area biplots.

10.5 Functions for constructing monoplots.

References.

Index.

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.

 

Rezensionen

Autor: John Gower
ISBN-13 :: 9780470973202
ISBN: 047097320X
Verlag: John Wiley & Sons
Seiten: 480
Sprache: Englisch
Auflage 1. Auflage
Sonstiges: Ebook