Cooperative Path Planning of Unmanned Aerial Vehicles
- 0 %
Der Artikel wird am Ende des Bestellprozesses zum Download zur Verfügung gestellt.

Cooperative Path Planning of Unmanned Aerial Vehicles

 E-Book
Sofort lieferbar | Lieferzeit: Sofort lieferbar I
ISBN-13:
9780470975206
Veröffentl:
2010
Einband:
E-Book
Seiten:
216
Autor:
Antonios Tsourdos
eBook Typ:
PDF
eBook Format:
Reflowable E-Book
Kopierschutz:
Adobe DRM [Hard-DRM]
Sprache:
Englisch
Beschreibung:

An invaluable addition to the literature on UAV guidance and cooperative control, Cooperative Path Planning of Unmanned Aerial Vehicles is a dedicated, practical guide to computational path planning for UAVs. One of the key issues facing future development of UAVs is path planning: it is vital that swarm UAVs/ MAVs can cooperate together in a coordinated manner, obeying a pre-planned course but able to react to their environment by communicating and cooperating. An optimized path is necessary in order to ensure a UAV completes its mission efficiently, safely, and successfully. Focussing on the path planning of multiple UAVs for simultaneous arrival on target, Cooperative Path Planning of Unmanned Aerial Vehicles also offers coverage of path planners that are applicable to land, sea, or space-borne vehicles. Cooperative Path Planning of Unmanned Aerial Vehicles is authored by leading researchers from Cranfield University and provides an authoritative resource for researchers, academics and engineers working in the area of cooperative systems, cooperative control and optimization particularly in the aerospace industry.
An invaluable addition to the literature on UAV guidance andcooperative control, Cooperative Path Planning of UnmannedAerial Vehicles is a dedicated, practical guide tocomputational path planning for UAVs. One of the key issues facingfuture development of UAVs is path planning: it is vital that swarmUAVs/ MAVs can cooperate together in a coordinated manner, obeyinga pre-planned course but able to react to their environment bycommunicating and cooperating. An optimized path is necessary inorder to ensure a UAV completes its mission efficiently, safelyand successfully.Focussing on the path planning of multiple UAVs for simultaneousarrival on target, Cooperative Path Planning of Unmanned AerialVehicles also offers coverage of path planners that areapplicable to land, sea, or space-borne vehicles.Cooperative Path Planning of Unmanned Aerial Vehicles isauthored by leading researchers from Cranfield University andprovides an authoritative resource for researchers, academics andengineers working in the area of cooperative systems, cooperativecontrol and optimization particularly in the aerospaceindustry.
About the Authors.Series Preface.Preface.Acknowledgements.List of Figures.List of Tables.Nomenclature.1. Introduction.1.1 Path Planning Formulation.1.2 Path Planning Constraints.1.3 Cooperative Path Planning and Mission Planning.1.4 Path Planning - An Overview.1.5 The Road Map Method.1.6 Probabilistic Methods.1.7 Potential Field.1.8 Cell Decomposition.1.9 Optimal Control.1.10 Optimization Techniques.1.11 Trajectories for Path Planning.1.12 Outline of the Book.References.2. Path Planning in Two Dimensions.2.1 Dubins Paths.2.2 Designing Dubins Path using Analytical Geometry.2.3 Existence of Dubins Paths.2.4 Length of Dubins Paths.2.5 Design of Dubins Paths using Principles of DifferentialGeometry.2.6 Path of Continuous Curvature.2.7 Producing Flyable Clothoid Paths.28 Producing Flyable Pythagorean Hodograph Paths (2D).References.3. Path Planning in Three Dimensions.3.1 Dubins Paths in Three Dimensions Using DifferentialGeometry.3.2 Path Length - Dubins 3D.3.3 Pythagorean Hodograph Paths - 3D.3.4 Design of Flyable Paths Using PH Curves.References.4. Collision Avoidance.4.1 Research into Obstacle Avoidance.4.2 Obstacle Avoidance for Mapped Obstacles.4.3 Obstacle Avoidance of Unmapped Static Obstacles.4.4 Algorithmic Implementation.References.5. Path-Following Guidance.5.1 Path Following the Dubins Path.5.2 Linear Guidance Algorithm.5.3 Nonlinear Dynamic Inversion Guidance.5.4 Dynamic Obstacle Avoidance Guidance.References.6. Path Planning for Multiple UAVs.6.1 Problem Formulation.6.2 Simultaneous Arrival.6.3 Phase I: Producing Flyable Paths.6.4 Phase II: Producing Feasible Paths.6.5 Phase III: Equalizing Path Length.6.6 Multiple Path Algorithm.6.7 Algorithm Application for Multiple UAVs.6.8 2D Pythagorean Hodograph Paths.6.9 3D Dubins Paths.6.10 3D Pythagorean Hodograph Paths.References.Appendix A Differential Geometry.Appendix B. Pythagorean Hodograph.Index.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.