Principles of Astrophysical Fluid Dynamics

 HC gerader Rücken kaschiert
Print on Demand | Lieferzeit: Print on Demand - Lieferbar innerhalb von 3-5 Werktagen I
Alle Preise inkl. MwSt. | Versandkostenfrei
Nicht verfügbar Zum Merkzettel
Gewicht:
599 g
Format:
250x175x17 mm
Beschreibung:

Cathie Clarke is Reader in Theoretical Astrophysics at the University of Cambridge and Director of Studies in Astrophysics at Clare College. She developed the original course in Astrophysical Fluid Dynamics as part of Part II Astrophysics in 1996 and delivered the course 1996¿9. Her research is based on accretion disc theory and star formation (both of which are strongly based on fluid dynamics) and she is the author of around 70 articles in refereed journals, plus a further 50 reviews, proceedings etc. She has taught extensively within the University of Cambridge, having also delivered lecture courses in Statistical Physics, Mathematical Methods and Galactic Dynamics, and has supervised for a variety of courses within the Physics and Mathematics Triposes.
This comprehensive textbook introduces the necessary fluid dynamics to understand a wide range of astronomical phenomena, from stellar structures to supernovae blast waves, to accretion discs. The authors introduce and derive the fundamental equations, supplemented by text that conveys a more intuitive understanding of the subject, and to emphasise the observable phenomena that rely on fluid dynamical processes. It has been developed for use by final year undergraduate and starting graduate students of astrophysics. It contains exercises with solutions available to lecturers on a password protected website at cambridge.org/9780521853316.
1. Introduction to concepts; 2. The fluid equations; 3. Gravitation; 4. The energy equation; 5. Hydrostatic equilibrium; 6. Propagation of sound waves; 7. Supersonic flows; 8. Blast waves; 9. Bernoulli's equation; 10. Fluid instabilities; 11. Viscous flows; 12. Accretion disks in astrophysics; 13. Plasmas; Appendix 1. Equations in curvilinear coordinates; Appendix 2. Exercises; Bibliography; Index.
Fluid dynamical forces drive most of the fundamental processes in the Universe and so play a crucial role in our understanding of astrophysics. This comprehensive textbook introduces the necessary fluid dynamics to understand a wide range of astronomical phenomena, from stellar structures to supernovae blast waves, to accretion discs. The authors' approach is to introduce and derive the fundamental equations, supplemented by text that conveys a more intuitive understanding of the subject, and to emphasise the observable phenomena that rely on fluid dynamical processes. The textbook has been developed for use by final year undergraduate and starting graduate students of astrophysics, and contains over fifty exercises. It is based on the authors' many years of teaching their astrophysical fluid dynamics course at the University of Cambridge.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.