Der Artikel wird am Ende des Bestellprozesses zum Download zur Verfügung gestellt.

Control Theory for Partial Differential Equations: Volume 2, Abstract Hyperbolic-like Systems over a Finite Time Horizon

Continuous and Approximation Theories
 PDF
Sofort lieferbar | Lieferzeit: Sofort lieferbar I
ISBN-13:
9781107108837
Veröffentl:
2000
Einband:
PDF
Seiten:
0
Autor:
Irena Lasiecka
Serie:
Encyclopedia of Mathematics and its Applications
eBook Typ:
PDF
eBook Format:
PDF
Kopierschutz:
Adobe DRM [Hard-DRM]
Sprache:
Englisch
Beschreibung:

Originally published in 2000, this is the second volume of a comprehensive two-volume treatment of quadratic optimal control theory for partial differential equations over a finite or infinite time horizon, and related differential (integral) and algebraic Riccati equations. Both continuous theory and numerical approximation theory are included. The authors use an abstract space, operator theoretic approach, which is based on semigroups methods, and which unifies across a few basic classes of evolution. The various abstract frameworks are motivated by, and ultimately directed to, partial differential equations with boundary/point control. Volume 2 is focused on the optimal control problem over a finite time interval for hyperbolic dynamical systems. A few abstract models are considered, each motivated by a particular canonical hyperbolic dynamics. It presents numerous fascinating results. These volumes will appeal to graduate students and researchers in pure and applied mathematics and theoretical engineering with an interest in optimal control problems.
Originally published in 2000, this is the second volume of a comprehensive two-volume treatment of quadratic optimal control theory for partial differential equations over a finite or infinite time horizon, and related differential (integral) and algebraic Riccati equations. Both continuous theory and numerical approximation theory are included. The authors use an abstract space, operator theoretic approach, which is based on semigroups methods, and which unifies across a few basic classes of evolution. The various abstract frameworks are motivated by, and ultimately directed to, partial differential equations with boundary/point control. Volume 2 is focused on the optimal control problem over a finite time interval for hyperbolic dynamical systems. A few abstract models are considered, each motivated by a particular canonical hyperbolic dynamics. It presents numerous fascinating results. These volumes will appeal to graduate students and researchers in pure and applied mathematics and theoretical engineering with an interest in optimal control problems.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.