Structural Geology Algorithms

Vectors and Tensors
Besorgungstitel - wird vorgemerkt | Lieferzeit: Besorgungstitel - Lieferbar innerhalb von 10 Werktagen I
Alle Preise inkl. MwSt. | Versandkostenfrei
Nicht verfügbar Zum Merkzettel
Gewicht:
644 g
Format:
245x190x18 mm
Beschreibung:

Allmendinger, Richard W.Richard W. Allmendinger is a structural geologist and a professor in the Earth and Atmospheric Sciences Department at Cornell University. He is widely known for his work on thrust tectonics and earthquake geology in South America, where much of his work over the past three decades has been based, as part of the Cornell Andes Project. Professor Allmendinger is the author of more than 100 publications and numerous widely used structural geology programs for Macs and PCs.Cardozo, NestorNestor Cardozo is an associate professor at the University of Stavanger, Norway, where he teaches undergraduate and graduate courses on structural geology and its application to petroleum geosciences. He has been involved in several multidisciplinary research projects to realistically include faults and their associated deformation in reservoir models. He is the author of several widely used structural geology and basin analysis programs for Macs.Fisher, Donald M.Donald M. Fisher is a structural geologist and professor at Pennsylvania State University, where he leads a Structural Geology and Tectonics research group. His research on active structures, strain histories and deformation along convergent plate boundaries has taken him to field areas in Central America, Kodiak Alaska, northern Japan, Taiwan and offshore Sumatra. He has been teaching structural geology to undergraduate and graduate students for more than 20 years.
An innovative lab book providing a unified methodology for problem solving in structural geology using linear algebra and computation.
Preface; 1. Problem solving in structural geology; 2. Coordinate systems, scalars and vectors; 3. Transformations of coordinate axes and vectors; 4. Matrix operations and indicial notation; 5. Tensors; 6. Stress; 7. Introduction to deformation; 8. Infinitesimal strain; 9. Finite strain; 10. Progressive strain histories and kinematics; 11. Velocity description of deformation; 12. Error analysis; References; Index.
State-of-the-art analysis of geological structures has become increasingly quantitative but traditionally, graphical methods are used in teaching. This innovative lab book provides a unified methodology for problem-solving in structural geology using linear algebra and computation. Assuming only limited mathematical training, the book begins with classic orientation problems and progresses to more fundamental topics of stress, strain and error propagation. It introduces linear algebra methods as the foundation for understanding vectors and tensors, and demonstrates the application of geometry and kinematics in geoscience without requiring students to take a supplementary mathematics course. All algorithms are illustrated with a suite of online MATLAB functions, allowing users to modify the code to solve their own structural problems. Containing 20 worked examples and over 60 exercises, this is the ideal lab book for advanced undergraduates or beginning graduate students. It will also provide professional structural geologists with a valuable reference and refresher for calculations. This innovative lab book provides a unified methodology for problem solving in structural geology using linear algebra and computation. Containing over 60 exercises, and with adaptable MATLAB functions available online, this is the ideal resource for advanced undergraduates or beginning graduate students and a valuable reference for professional structural geologists.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.