Statistical Physics of Liquids at Freezing and Beyond
- 0 %
Der Artikel wird am Ende des Bestellprozesses zum Download zur Verfügung gestellt.

Statistical Physics of Liquids at Freezing and Beyond

 PDF
Sofort lieferbar | Lieferzeit: Sofort lieferbar I
ISBN-13:
9781139142274
Veröffentl:
2011
Einband:
PDF
Seiten:
0
Autor:
Shankar Prasad Das
eBook Typ:
PDF
eBook Format:
PDF
Kopierschutz:
Adobe DRM [Hard-DRM]
Sprache:
Englisch
Beschreibung:

Exploring important theories for understanding freezing and the liquid-glass transition, this book is useful for graduate students and researchers in soft-condensed matter physics, chemical physics and materials science. It details recent ideas and key developments, providing an up-to-date view of current understanding. The standard tools of statistical physics for the dense liquid state are covered. The freezing transition is described from the classical density functional approach. Classical nucleation theory as well as applications of density functional methods for nucleation of crystals from the melt are discussed, and compared to results from computer simulation of simple systems. Discussions of supercooled liquids form a major part of the book. Theories of slow dynamics and the dynamical heterogeneities of the glassy state are presented, as well as nonequilibrium dynamics and thermodynamic phase transitions at deep supercooling. Mathematical treatments are given in full detail so readers can learn the basic techniques.
Exploring important theories for understanding freezing and the liquid-glass transition, this book is useful for graduate students and researchers in soft-condensed matter physics, chemical physics and materials science. It details recent ideas and key developments, providing an up-to-date view of current understanding. The standard tools of statistical physics for the dense liquid state are covered. The freezing transition is described from the classical density functional approach. Classical nucleation theory as well as applications of density functional methods for nucleation of crystals from the melt are discussed, and compared to results from computer simulation of simple systems. Discussions of supercooled liquids form a major part of the book. Theories of slow dynamics and the dynamical heterogeneities of the glassy state are presented, as well as nonequilibrium dynamics and thermodynamic phase transitions at deep supercooling. Mathematical treatments are given in full detail so readers can learn the basic techniques.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.