Der Artikel ist weiterhin als ^^OTHERCONDITION^^ verfügbar.
Autor: Tze-jer Chuang
ISBN-13: 9781402039515
Einband: eBook
Seiten: 324
Sprache: Englisch
eBook Typ: PDF
eBook Format: eBook
Kopierschutz: Adobe DRM [Hard-DRM]
Systemvoraussetzungen
Der Artikel wird am Ende des Bestellprozesses zum Download zur Verfügung gestellt.

Nanomechanics of Materials and Structures

Geben Sie Ihre Bewertung ab!  
Wir verlosen jeden Monat unter allen freigegebenen Rezensionen
3 Gutscheine im Wert von 20 Euro. Teilnahmebedingungen
1
This book is derived from the proceedings of the International Workshop on Nanomechanics held at Asilomar Conference Grounds in Pacific Grove, California on July 14-17, 2004. Approximately 70 leading experts from academia, government and industrial sectors in semiconductors, computers, communication, information technology, defense, energy, transportation and aerospace attended the Workshop (see the workshop photo taken on July 16, 2004). The main objective was to convene leading researchers in the nanotechnology community to assess the current state-of-the-art and disseminate recent progress, critical issues, barriers to applications, and directions for future research in nanomechanics. Miniaturization of structural components and functional devices such as electronic, optical, mechanical and electric-magnetic parts has been a recent trend, and the pace has accelerated over the past few years. Advances in micromanufacturing, semiconductor processing (e.g., etching, lithography, grafting, etc.), sensors, actuators and microprocessors have opened up a revolutionary path to the development of new technologies such as micro-electro-mechanical systems (MEMS), nano-electro-mechanical systems (NEMS), micro-engines, smart structures, smart controllers, lab-- a-chip devices, and even bio-medical sensing devices which can detect, analyze, decide and activate appropriate functions in real time. The above-mentioned devices, structures, or systems, have one issue in common. In order to perform their assigned functions, they must maintain their structural integrity and be reliable and durable during their entire designed service life. Thus, strength, durability, and time-dependent mechanical property degradation are major concerns for design engineers and device manufacturers, even though the parts are designed for electronic, magnetic, optical or other functions.
4
Preface; Summary of Group Discussions; Nano Mechanics/Materials Research, by Ken P.Chong; An ab-initio study of mechanical behavior for (MO) Nanorods, by X. Song, Q. Ge and S. C. Yen; Phase Field Modeling of Solidification and Melting of a Confined Nanoparticle, by J. Slutsker, A. L.Roytburd, G. B. McFadden, and.A.Warren; Friction-Induced Nucleation of Nanocrystals, by S. Guruzu, G. Xu, and H. Liang; Modeling of Carbon Nanotubes and Their Composites, by Chunyu Li and Tsu-Wei Chou; On the Tensile Strength of a Solid Nanowire, by Tze-jer Chuang; Fracture Nucleation in Single-Wall Carbon Nanotubes, by H. Jiang, Y. Huang , P. Zhang and K. C. Hwang; Multiscale Modeling of a Germanium Quantum Dot in Silicon, by V.K. Tewary and D.T. Read; Nanomechanics of Biological Single Crystals, by Joanna Aizenberg;
Nano/Micro Fluidic Systems: Design, Characterization, and Biomedical Applications, by Fan-Gang Tseng; Mechanical Characterization of a Single Nanofiber: Experimental Techniques, by E.P.S. Tan and C.T. Lim; Atomistic studies of Flaw Tolerant Nanoscale Structural Links in Biological Materials: Nature’s principle of material design, by Markus J. Buehler and Huajian Gao; Towards the Integration of Nano/Micro Devices Using MEMS Technology, by Weileun Fang, Jerwei Hsieh, and Hung-Yi Lin; Atomic Scale Mechanisms of Stress Production in Elastomers, by A.F. Bower and J.H. Weiner; Dynamic Indentation of Polymers Using the Atomic Force Microscope, by H. Y. Hou, N. K. Chang and S. H. Chang; Fabrication and Simulation of Nanostructures on Silicon by Laser Assisted Direct Imprint Technique, by F-B Hsiao, Y-C Lee, C-P Liu, C-H Chuang, C-P Jen, D-B Wang, and C-Y.Lin; Structure and Stress Evolution due to Medium Energy Ion Bombardment of Silicon, by N. Kalyanasundaram, M. C. Moore, J. B. Freund, and H. T. Johnson; Mechanics of Nanostructures, by R. Ruoff and P. Pugno; Residual Stresses in Nano-Film/Substrate Systems, by Sanboh Lee; Nanomechanics of Crack Front Mobility, by TingZhu, Ju Li and Sidney Yip; Finite Temperature Coupled Atomistic/Continuum Discrete Dislocation Dynamics Simulation of Nanoindentation, by
Behrouz Shiari and Ronald E. Miller; Static Atomistic Simulations of Nanoindentation and Determination of Nanohardness, by Yeau-Ren Jeng and Chung-Ming Tan; Electric Field-Directed Patterning of Molecules on a Solid Surface, by W. Hong and Z. Suo; Dynamics of Dislocations in Thin Colloidal Crystals, by P. Schall, I. Cohen, D. A. Weitz, and F. Spaepen; Mesoscopic Length Scales for Deformed Nanostructures, by W.M. Mook, M.D. Chambers, C.R. Perrey, C.B.Carter, R.E. Miller, W.A. Curtin and W.W. Gerberich; Rough Surface Plasticity and Adhesion across Length Scales, by Yan-Fei Gao and Allan F. Bower; Modeling the Effect of Texture on the Deformation Mechanisms of Nanocrystalline Materials at the Atomistic Scale, by M. J. Catura and T. G. Nieh; Modeling the Tribochemical Aspects of Friction and Gradual Wear of DEC Films, by Feodor M. Borodich, Chad S. Korach, and Leon M. Keer; Subject Index; Author Index.
3
This book is derived from the proceedings of the International Workshop on Nanomechanics held at Asilomar Conference Grounds in Pacific Grove, California on July 14-17, 2004. Approximately 70 leading experts from academia, government and industrial sectors in semiconductors, computers, communication, information technology, defense, energy, transportation and aerospace attended the Workshop (see the workshop photo taken on July 16, 2004). The main objective was to convene leading researchers in the nanotechnology community to assess the current state-of-the-art and disseminate recent progress, critical issues, barriers to applications, and directions for future research in nanomechanics. Miniaturization of structural components and functional devices such as electronic, optical, mechanical and electric-magnetic parts has been a recent trend, and the pace has accelerated over the past few years. Advances in micromanufacturing, semiconductor processing (e.g., etching, lithography, grafting, etc.), sensors, actuators and microprocessors have opened up a revolutionary path to the development of new technologies such as micro-electro-mechanical systems (MEMS), nano-electro-mechanical systems (NEMS), micro-engines, smart structures, smart controllers, lab-- a-chip devices, and even bio-medical sensing devices which can detect, analyze, decide and activate appropriate functions in real time. The above-mentioned devices, structures, or systems, have one issue in common. In order to perform their assigned functions, they must maintain their structural integrity and be reliable and durable during their entire designed service life. Thus, strength, durability, and time-dependent mechanical property degradation are major concerns for design engineers and device manufacturers, even though the parts are designed for electronic, magnetic, optical or other functions.

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.

 

Rezensionen

Autor: Tze-jer Chuang
ISBN-13 :: 9781402039515
ISBN: 1402039514
Verlag: Springer Netherland
Seiten: 324
Sprache: Englisch
Auflage 2006
Sonstiges: Ebook