Global Bifurcation Theory and Hilbert's Sixteenth Problem
- 0 %
Der Artikel wird am Ende des Bestellprozesses zum Download zur Verfügung gestellt.

Global Bifurcation Theory and Hilbert's Sixteenth Problem

 PDF
Sofort lieferbar | Lieferzeit: Sofort lieferbar I
ISBN-13:
9781441991683
Einband:
PDF
Seiten:
182
Autor:
V. Gaiko
Serie:
Mathematics and Its Applications
eBook Typ:
PDF
eBook Format:
PDF
Kopierschutz:
Adobe DRM [Hard-DRM]
Sprache:
Englisch
Beschreibung:

On the 8th of August 1900 outstanding German mathematician David Hilbert delivered a talk "e;Mathematical problems"e; at the Second Interna- tional Congress of Mathematicians in Paris. The talk covered practically all directions of mathematical thought of that time and contained a list of 23 problems which determined the further development of mathema- tics in many respects (1, 119]. Hilbert's Sixteenth Problem (the second part) was stated as follows: Problem. To find the maximum number and to determine the relative position of limit cycles of the equation dy Qn(X, y) -= dx Pn(x, y)' where Pn and Qn are polynomials of real variables x, y with real coeffi- cients and not greater than n degree. The study of limit cycles is an interesting and very difficult problem of the qualitative theory of differential equations. This theory was origi- nated at the end of the nineteenth century in the works of two geniuses of the world science: of the Russian mathematician A. M. Lyapunov and of the French mathematician Henri Poincare. A. M. Lyapunov set forth and solved completely in the very wide class of cases a special problem of the qualitative theory: the problem of motion stability (154]. In turn, H. Poincare stated a general problem of the qualitative analysis which was formulated as follows: not integrating the differential equation and using only the properties of its right-hand sides, to give as more as possi- ble complete information on the qualitative behaviour of integral curves defined by this equation (176].
On the 8th of August 1900 outstanding German mathematician David Hilbert delivered a talk "e;Mathematical problems"e; at the Second Interna- tional Congress of Mathematicians in Paris. The talk covered practically all directions of mathematical thought of that time and contained a list of 23 problems which determined the further development of mathema- tics in many respects (1, 119]. Hilbert's Sixteenth Problem (the second part) was stated as follows: Problem. To find the maximum number and to determine the relative position of limit cycles of the equation dy Qn(X, y) -= dx Pn(x, y)' where Pn and Qn are polynomials of real variables x, y with real coeffi- cients and not greater than n degree. The study of limit cycles is an interesting and very difficult problem of the qualitative theory of differential equations. This theory was origi- nated at the end of the nineteenth century in the works of two geniuses of the world science: of the Russian mathematician A. M. Lyapunov and of the French mathematician Henri Poincare. A. M. Lyapunov set forth and solved completely in the very wide class of cases a special problem of the qualitative theory: the problem of motion stability (154]. In turn, H. Poincare stated a general problem of the qualitative analysis which was formulated as follows: not integrating the differential equation and using only the properties of its right-hand sides, to give as more as possi- ble complete information on the qualitative behaviour of integral curves defined by this equation (176].

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.