Wavelet Theory and Its Applications
- 0 %
Der Artikel wird am Ende des Bestellprozesses zum Download zur Verfügung gestellt.

Wavelet Theory and Its Applications

 PDF
| Lieferzeit:3-5 Tage I
ISBN-13:
9781461535843
Einband:
PDF
Seiten:
223
Autor:
Randy K. Young
Serie:
The Springer International Series in Engineering and Computer Science
eBook Typ:
PDF
eBook Format:
PDF
Kopierschutz:
Adobe DRM [Hard-DRM]
Sprache:
Englisch
Beschreibung:

The continuous wavelet transform has deep mathematical roots in the work of Alberto P. Calderon. His seminal paper on complex method of interpolation and intermediate spaces provided the main tool for describing function spaces and their approximation properties. The Calderon identities allow one to give integral representations of many natural operators by using simple pieces of such operators, which are more suited for analysis. These pieces, which are essentially spectral projections, can be chosen in clever ways and have proved to be of tremendous utility in various problems of numerical analysis, multidimensional signal processing, video data compression, and reconstruction of high resolution images and high quality speech. A proliferation of research papers and a couple of books, written in English (there is an earlier book written in French), have emerged on the subject. These books, so far, are written by specialists for specialists, with a heavy mathematical flavor, which is characteristic of the Calderon-Zygmund theory and related research of Duffin-Schaeffer, Daubechies, Grossman, Meyer, Morlet, Chui, and others. Randy Young's monograph is geared more towards practitioners and even non-specialists, who want and, probably, should be cognizant of the exciting proven as well as potential benefits which have either already emerged or are likely to emerge from wavelet theory.
The continuous wavelet transform has deep mathematical roots in the work of Alberto P. Calderon. His seminal paper on complex method of interpolation and intermediate spaces provided the main tool for describing function spaces and their approximation properties. The Calderon identities allow one to give integral representations of many natural operators by using simple pieces of such operators, which are more suited for analysis. These pieces, which are essentially spectral projections, can be chosen in clever ways and have proved to be of tremendous utility in various problems of numerical analysis, multidimensional signal processing, video data compression, and reconstruction of high resolution images and high quality speech. A proliferation of research papers and a couple of books, written in English (there is an earlier book written in French), have emerged on the subject. These books, so far, are written by specialists for specialists, with a heavy mathematical flavor, which is characteristic of the Calderon-Zygmund theory and related research of Duffin-Schaeffer, Daubechies, Grossman, Meyer, Morlet, Chui, and others. Randy Young's monograph is geared more towards practitioners and even non-specialists, who want and, probably, should be cognizant of the exciting proven as well as potential benefits which have either already emerged or are likely to emerge from wavelet theory.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.