Beschreibung:
Over the past thirty-five years, a tremendous body of both theoretical and empirical research has been established on the `science of transportation'. The Handbook of Transportation Science has collected and synthesized this research into a systematic treatment of this field covering its fundamental concepts, methods, and principles. The purpose of this handbook is to define transportation as a scientific discipline that transcends transportation technology and methods. Whether by car, truck, airplane - or by a mode of transportation that has not yet been conceived - transportation obeys fundamental properties. The science of transportation defines these properties, and demonstrates how our knowledge of one mode of transportation can be used to explain the behavior of another. Transportation scientists are motivated by the desire to explain spatial interactions that result in movement of people or objects from place to place. Its methodologies draw from physics, operations research, probability and control theory. It is fundamentally a quantitative discipline, relying on mathematical models and optimization algorithms to explain the phenomena of transportation. The fourteen chapters in the handbook are written by the leading researchers in transportation science in an effort to define and categorize for the first time the scientific nature and state of the art of the field. As such, it is directed to the broader research community, transportation practitioners, and future transportation scientists.
Over the past thirty-five years, a tremendous body of both theoretical and empirical research has been established on the `science of transportation'. The Handbook of Transportation Science has collected and synthesized this research into a systematic treatment of this field covering its fundamental concepts, methods, and principles. The purpose of this handbook is to define transportation as a scientific discipline that transcends transportation technology and methods. Whether by car, truck, airplane - or by a mode of transportation that has not yet been conceived - transportation obeys fundamental properties. The science of transportation defines these properties, and demonstrates how our knowledge of one mode of transportation can be used to explain the behavior of another. Transportation scientists are motivated by the desire to explain spatial interactions that result in movement of people or objects from place to place. Its methodologies draw from physics, operations research, probability and control theory. It is fundamentally a quantitative discipline, relying on mathematical models and optimization algorithms to explain the phenomena of transportation. The fourteen chapters in the handbook are written by the leading researchers in transportation science in an effort to define and categorize for the first time the scientific nature and state of the art of the field. As such, it is directed to the broader research community, transportation practitioners, and future transportation scientists.