Der Artikel wird am Ende des Bestellprozesses zum Download zur Verfügung gestellt.

Cryogenic Operation of Silicon Power Devices

 PDF
Sofort lieferbar | Lieferzeit: Sofort lieferbar I
ISBN-13:
9781461557517
Veröffentl:
2012
Einband:
PDF
Seiten:
148
Autor:
B. Jayant Baliga
Serie:
Power Electronics and Power Systems
eBook Typ:
PDF
eBook Format:
PDF
Kopierschutz:
Adobe DRM [Hard-DRM]
Sprache:
Englisch
Beschreibung:

The advent of low temperature superconductors in the early 1960's converted what had been a laboratory curiosity with very limited possibilities to a prac- tical means of fabricating electrical components and devices with lossless con- ductors. Using liquid helium as a coolant, the successful construction and operation of high field strength magnet systems, alternators, motors and trans- mission lines was announced. These developments ushered in the era of what may be termed cryogenic power engineering and a decade later successful oper- ating systems could be found such as the 5 T saddle magnet designed and built in the United States by the Argonne National Laboratory and installed on an experimental power generating facility at the High Temperature Institute in Moscow, Russia. The field of digital computers provided an incentive of a quite different kind to operate at cryogenic temperatures. In this case, the objective was to ob- tain higher switching speeds than are possible at ambient temperatures with the critical issue being the operating characteristics of semiconductor switches under cryogenic conditions. By 1980, cryogenic electronics was established as another branch of electric engineering.
The advent of low temperature superconductors in the early 1960's converted what had been a laboratory curiosity with very limited possibilities to a prac- tical means of fabricating electrical components and devices with lossless con- ductors. Using liquid helium as a coolant, the successful construction and operation of high field strength magnet systems, alternators, motors and trans- mission lines was announced. These developments ushered in the era of what may be termed cryogenic power engineering and a decade later successful oper- ating systems could be found such as the 5 T saddle magnet designed and built in the United States by the Argonne National Laboratory and installed on an experimental power generating facility at the High Temperature Institute in Moscow, Russia. The field of digital computers provided an incentive of a quite different kind to operate at cryogenic temperatures. In this case, the objective was to ob- tain higher switching speeds than are possible at ambient temperatures with the critical issue being the operating characteristics of semiconductor switches under cryogenic conditions. By 1980, cryogenic electronics was established as another branch of electric engineering.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.