Quantum Electrochemistry
- 0 %

Quantum Electrochemistry

Sofort lieferbar | Lieferzeit: Sofort lieferbar I
Alle Preise inkl. MwSt. | Versandkostenfrei
John O’M. Bockris
778 g
229x152x29 mm

Springer Book Archives
1. Electric Double Layers at Metals.- 1.1. Structure of the Double Layer.- 1.1.1. The Diffuse Layer.- 1.1.2. Stern-Grahame-Devanathan Model.- 1.1.3. Water Structure in the Double Layer.- 1.2. Methods of Investigation.- 1.2.1. Objectives of a Double-Layer Study.- 1.2.2. Classical Electrocapillary Curve.- 1.2.3. Capacitance Method.- 1.2.4. Ellipsometry.- 1.2.5. Radiotracer Measurements.- 1.2.6. Heat of Adsorption.- 1.2.7. Time Dependence.- 1.3. The Potential of Zero Charge.- 1.3.1. Nature of the Potential of Zero Charge.- 1.3.2. Importance of the Potential of Zero Charge.- 1.3.3. Methods of Determination of the Potential of Zero Charge.- 1.3.4. For Liquid Metals.- 1.3.5. For Solids.- 1.3.6. Numerical Values of the Absolute Potential Differences at an Interface.- 1.4. Forces in Contact Adsorption.- 1.5. Isotherms.- 1.6. Dielectric Constants in the Double Layer.- 1.7. Relaxation of Solvent Origin in the Double Layer.- 1.8. Double-Layer Properties as a Function of a Potential-Dependent Dipole Term.- 1.9. Adsorption of Undissociated Organic Molecules.- 1.10. Radicals on Electrodes.- 1.11. Double Layer on Solids.- 1.12. Oxygen on Electrodes.- 1.13. The Near Future in the Development of the Model of the Interface.- References.- 2. Electrode Kinetics.- 2.1. Nature of Electrochemical Reactions.- 2.2. Overpotential.- 2.3. Rate as a Function of Overpotential.- 2.4. Exchange Current Density.- 2.5. Rate Constants.- 2.6. The Symmetry Factor.- 2.7. The Transfer Coefficient.- 2.8. Stoichiometric Number.- 2.9. Stoichiometric Factors.- 2.10. Rate as a Function of Temperature.- 2.11. Comparative Reaction Rates of Isotopic Reactions.- 2.12. Chemical Surface Reactions.- 2.13. Consecutive Reaction Rates.- 2.14. Chemical Homogeneous Reactions.- 2.15. Effect of Mass Transport on Electrochemical Reactions.- 2.16. Electrode Kinetics as a Function of the Double-Layer Structure.- 2.17. Reaction Rates and Isotherms.- 2.18. Transients (Sweeps).- 2.19. Electric Equivalent Circuits.- 2.20. Electrocatalysis.- 2.21. Mechanisms.- 2.22. Electrocrystallization.- 2.23. Steps before Crystal Growth.- 2.24. Crystal Growth.- 2.25. Interphasial Charge Transfer in Engineering, Metallurgy, and Biology.- 2.26. Techniques of Study.- References.- 3. Quanta and Surfaces.- 3.1. Introduction.- 3.2. Quantum Particles.- 3.2.1. The Phonon.- 3.2.2. The Plasmon.- 3.2.3. The Polaron.- 3.2.4. The Exciton.- 3.3. Electron Distribution in the Metal Electrode.- 3.3.1. Fermi Distribution Law.- 3.3.2. Density of States.- 3.3.3. Fermi Surface.- 3.3.4. Cyclotron Resonance.- 3.4. Quantal Discussion of Surfaces.- 3.5. Theory of Surface States.- 3.6. Surface Energy.- 3.7. Quantum Mechanical Calculations of Adsorption Energy.- 3.8. Spectra of Adsorbed Atoms.- 3.9. Further Work on the Quantum Mechanics of Adsorbed Species.- 3.9.1. Ionic Adsorption.- 3.9.2. Other Treatments of Adsorption.- 3.10. Concluding Remarks.- References.- 4. Time-Dependent Perturbation Theory.- 4.1. Introduction.- 4.1.1. Time-Dependent Perturbation Theory in Kinetics.- 4.1.2. Radiationless Transition.- 4.2. General Background.- 4.3. An Interim Comment.- 4.4. Probability of Transition.- 4.5. Golden Rule for Transition Rates.- 4.5.1. A More Realistic Approach to the Calculation of the Probability of Transition.- 4.5.2. Calculation of Rate.- 4.6. Applicability of Time-Dependent Perturbation Theory (TDPT).- 4.7. Example of the Applicabilities of TDPT.- 4.8. Magnitude of the Perturbation.- 4.9. Relation of Time-Dependent Perturbation Theory to Reaction Kinetics.- 4.10. Perturbations by Electromagnetic Radiation: Bohr's Resonance (Coherence) Condition.- 4.11. Constant Perturbation for Electron Transition at Interfaces: Gurney Condition of Radiationless Transfer of Electrons.- 4.12. Types of Perturbation: Adiabatic and Nonadiabatic.- References.- 5. Long-Range Radiationless Energy Transfer in Condensed Media.- 5.1. Introduction.- 5.2. Experimental Evidence for Radiationless Energy Transfer over Long Distances.- 5.3. Mechanisms
The origin of this book lies in a time before one of the authors (J. O'M. B.) left the University of Pennsylvania bound for the Flinders University. His collaboration with Dennis Matthews at the University of Pennsylvania had contributed a singular experimental datum to the quantum theory of elec trode processes: the variation of the separation factor with potential, which could only be interpreted in terms of a quantum theory of electrode kinetics. The authors came together as a result of grad~ate work of one of them (S. U. M. K.) on the quantum mechanics and photo aspects of elec trode processes, and this book was written during a postdoctoral fellowship held by him at the Flinders University. Having stated the book's origin, it is worthwhile stating the rational izations the authors had for writing it. Historically, quantization in elec trochemistry began very early (1931) in the applications of the quantum theory to chemistry. (See the historical table on pages xviii-xix.) There was thereafter a cessation of work on the quantum theory in electrochemistry until a continuum dielectric viewpoint, based on Born's equation for solvation energy, began to be developed in the 1950s and snowballed during the 1960s.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.