Transition to Chaos
- 0 %
Der Artikel wird am Ende des Bestellprozesses zum Download zur Verfügung gestellt.

Transition to Chaos

Conservative Classical Systems and Quantum Manifestations
 PDF
Sofort lieferbar | Lieferzeit: Sofort lieferbar I
ISBN-13:
9781475743500
Veröffentl:
2013
Einband:
PDF
Seiten:
675
Autor:
Linda Reichl
Serie:
Institute for Nonlinear Science
eBook Typ:
PDF
eBook Format:
PDF
Kopierschutz:
Adobe DRM [Hard-DRM]
Sprache:
Englisch
Beschreibung:

Based on courses given at the universities of Texas in Austin, and California in San Diego, this book deals with the basic mechanisms that determine the dynamic evolution of classical and quantum systems. It presents, in as simple a manner as possible, the basic mechanisms that determine the dynamical evolution of both classical and quantum systems in sufficient generality to include quantum phenomena. The book begins with a discussion of Noether's theorem, integrability, KAM theory, and a definition of chaotic behavior; it continues with a detailed discussion of area-preserving maps, integrable quantum systems, spectral properties, path integrals, and periodically driven systems; and it concludes by showing how to apply the ideas to stochastic systems. The presentation is complete and self-contained; appendices provide much of the needed mathematical background, and there are extensive references to the current literature. Problems at the ends of chapters help students clarify their understanding. In this new edition, the presentation will be brought up to date throughout, and a new chapter on open quantum systems will be added.
Based on courses given at the universities of Texas in Austin, and California in San Diego, this book deals with the basic mechanisms that determine the dynamic evolution of classical and quantum systems. It presents, in as simple a manner as possible, the basic mechanisms that determine the dynamical evolution of both classical and quantum systems in sufficient generality to include quantum phenomena. The book begins with a discussion of Noether's theorem, integrability, KAM theory, and a definition of chaotic behavior; it continues with a detailed discussion of area-preserving maps, integrable quantum systems, spectral properties, path integrals, and periodically driven systems; and it concludes by showing how to apply the ideas to stochastic systems. The presentation is complete and self-contained; appendices provide much of the needed mathematical background, and there are extensive references to the current literature. Problems at the ends of chapters help students clarify their understanding. In this new edition, the presentation will be brought up to date throughout, and a new chapter on open quantum systems will be added.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.