Scattering of Light and Other Electromagnetic Radiation
- 0 %
Der Artikel wird am Ende des Bestellprozesses zum Download zur Verfügung gestellt.

Scattering of Light and Other Electromagnetic Radiation

Physical Chemistry: A Series of Monographs
 PDF
Sofort lieferbar | Lieferzeit: Sofort lieferbar I
ISBN-13:
9781483191744
Veröffentl:
2013
Einband:
PDF
Seiten:
688
Autor:
Milton Kerker
eBook Typ:
PDF
eBook Format:
PDF
Kopierschutz:
Adobe DRM [Hard-DRM]
Sprache:
Englisch
Beschreibung:

The Scattering of Light and Other Electromagnetic Radiation discusses the theory of electromagnetic scattering and describes some practical applications. The book reviews electromagnetic waves, optics, the interrelationships of main physical quantities and the physical concepts of optics, including Maxwell's equations, polarization, geometrical optics, interference, and diffraction. The text explains the Rayleigh2 theory of scattering by small dielectric spheres, the Bessel functions, and the Legendre functions. The author also explains how the scattering functions for a homogenous sphere change depending on different physical parameters such as the optical size, the complex refractive index, and the angle of observation. The author addresses the assignment of a complex dielectric constant and a corresponding refractive index to plasma when an alternating electrical field is applied that will make the plasma exhibit conductivity and polarization. In a liquid, the author points out that the intensity of scattering is one or two orders of magnitude less than that found in a gaseous system; he explains that the molecules are no longer acting as incoherent nor as randomly located scatterers. This book can be useful for physicists, chemists, biochemists, and engineers whose work includes research utilizing light scattering in the study of certain gases, pure liquids, molecular solutions, macromolecules, polymers, and glass.
The Scattering of Light and Other Electromagnetic Radiation discusses the theory of electromagnetic scattering and describes some practical applications. The book reviews electromagnetic waves, optics, the interrelationships of main physical quantities and the physical concepts of optics, including Maxwell's equations, polarization, geometrical optics, interference, and diffraction. The text explains the Rayleigh2 theory of scattering by small dielectric spheres, the Bessel functions, and the Legendre functions. The author also explains how the scattering functions for a homogenous sphere change depending on different physical parameters such as the optical size, the complex refractive index, and the angle of observation. The author addresses the assignment of a complex dielectric constant and a corresponding refractive index to plasma when an alternating electrical field is applied that will make the plasma exhibit conductivity and polarization. In a liquid, the author points out that the intensity of scattering is one or two orders of magnitude less than that found in a gaseous system; he explains that the molecules are no longer acting as incoherent nor as randomly located scatterers. This book can be useful for physicists, chemists, biochemists, and engineers whose work includes research utilizing light scattering in the study of certain gases, pure liquids, molecular solutions, macromolecules, polymers, and glass.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.