Richardson Extrapolation
- 0 %
Der Artikel wird am Ende des Bestellprozesses zum Download zur Verfügung gestellt.

Richardson Extrapolation

Practical Aspects and Applications
Sofort lieferbar | Lieferzeit: Sofort lieferbar I
ISBN-13:
9783110531985
Veröffentl:
2017
Seiten:
309
Autor:
Zahari Zlatev
Serie:
2, ISSN De Gruyter Series in Applied and Numerical Mathematics
eBook Typ:
EPUB
eBook Format:
Reflowable
Kopierschutz:
Adobe DRM [Hard-DRM]
Sprache:
Englisch
Beschreibung:

The series is devoted to the publication of high-level monographs and specialized graduate texts which cover the whole spectrum of applied mathematics, including its numerical aspects. The focus of the series is on the interplay between mathematical and numerical analysis, and also on its applications to mathematical models in the physical and life sciences.

Scientists and engineers are mainly using Richardson extrapolation as a computational tool for increasing the accuracy of various numerical algorithms for the treatment of systems of ordinary and partial differential equations and for improving the computational efficiency of the solution process by the automatic variation of the time-stepsizes. A third issue, the stability of the computations, is very often the most important one and, therefore, it is the major topic studied in all chapters of this book.
Clear explanations and many examples make this text an easy-to-follow handbook for applied mathematicians, physicists and engineers working with scientific models based on differential equations.

 

Contents
The basic properties of Richardson extrapolation
Richardson extrapolation for explicit Runge-Kutta methods
Linear multistep and predictor-corrector methods
Richardson extrapolation for some implicit methods
Richardson extrapolation for splitting techniques
Richardson extrapolation for advection problems
Richardson extrapolation for some other problems
General conclusions

Scientists and engineers are mainly using Richardson extrapolation as a computational tool for increasing the accuracy of various numerical algorithms for the treatment of systems of ordinary and partial differential equations and for improving the computational efficiency of the solution process by the automatic variation of the time-stepsizes. A third issue, the stability of the computations, is very often the most important one and, therefore, it is the major topic studied in all chapters of this book.
Clear explanations and many examples make this text an easy-to-follow handbook for applied mathematicians, physicists and engineers working with scientific models based on differential equations.

 

Contents
The basic properties of Richardson extrapolation
Richardson extrapolation for explicit Runge-Kutta methods
Linear multistep and predictor-corrector methods
Richardson extrapolation for some implicit methods
Richardson extrapolation for splitting techniques
Richardson extrapolation for advection problems
Richardson extrapolation for some other problems
General conclusions

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.