Dynamical Symmetries for Nanostructures
- 0 %
Der Artikel wird am Ende des Bestellprozesses zum Download zur Verfügung gestellt.

Dynamical Symmetries for Nanostructures

Implicit Symmetries in Single-Electron Transport Through Real and Artificial Molecules
 eBook
Sofort lieferbar | Lieferzeit: Sofort lieferbar I
ISBN-13:
9783211997246
Veröffentl:
2011
Einband:
eBook
Seiten:
351
Autor:
Konstantin Kikoin
eBook Typ:
PDF
eBook Format:
Reflowable eBook
Kopierschutz:
Digital Watermark [Social-DRM]
Sprache:
Englisch
Beschreibung:

This monograph aims to elucidate a more subtle aspect of group theory in the context of quantum mechanics—the notion of dynamical symmetry. With its main role manifested in nano- and meso-systems, it will be central to future quantum electronic devices.

Group theoretical concepts elucidate fundamental physical phenomena, including excitation spectra of quantum systems and complex geometrical structures such as molecules and crystals. These concepts are extensively covered in numerous textbooks. The aim of the present monograph is to illuminate more subtle aspects featuring group theory for quantum mechanics, that is, the concept of dynamical symmetry. Dynamical symmetry groups complement the conventional groups: their elements induce transitions between states belonging to different representations of the symmetry group of the Hamiltonian. Dynamical symmetry appears as a hidden symmetry in the hydrogen atom and quantum rotator problem, but its main role is manifested in nano and meso systems. Such systems include atomic clusters, large molecules, quantum dots attached to metallic electrodes, etc. They are expected to be the building blocks of future quantum electronic devices and information transmitting algorithms. Elucidation of the electronic properties of such systems is greatly facilitated by applying concepts of dynamical group theory.

1 Introduction.- 2 Hidden and Dynamical Symmetries of Atoms and Molecules.- 3 Nanostructures as Artificial Atoms and Molecules.- 4 Dynamical Symmetries in the Kondo Effect.- 5 Dynamical Symmetries in Molecular Electronics.- 6 Dynamical Symmetries and Spectroscopy of Quantum Dots.- 7 Dynamical Symmetries and Non-Equilibrium Electron Transport.- 8 Tunneling Through Moving Nanoobjects.- 9 Mathematical Instrumentation.- 10 Conclusions and Prospects.- Index.- References.

Group theoretical concepts elucidate fundamental physical phenomena, such as the spectrum of quantum systems and complex geometrical structures molecules and crystals. These concepts are extensively covered in numerous textbooks. The aim of the present monograph is to illuminate more subtle aspects featuring group theory for quantum mechanics, that is, the concept of dynamical symmetry. Dynamical symmetry groups complement the conventional groups: their elements induce transitions between states belonging to different representations of the symmetry group of the Hamiltonian. Dynamical symmetry appears as a hidden symmetry in the hydrogen atom and quantum rotator problem, but its main role is manifested in nano and meso systems. Such systems include atomic clusters, large molecules, quantum dots attached to metallic electrodes, etc. They are expected to be the building blocks of future quantum electronic devices and information transmitting algorithms. Elucidation of the electronic properties of such systems is greatly facilitated by applying concepts of dynamical group theory.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.