Der Artikel wird am Ende des Bestellprozesses zum Download zur Verfügung gestellt.

Physics of Organic Semiconductors

 E-Book
Sofort lieferbar | Lieferzeit: Sofort lieferbar I
ISBN-13:
9783527654963
Veröffentl:
2012
Einband:
E-Book
Seiten:
657
Autor:
Wolfgang Brütting
eBook Typ:
EPUB
eBook Format:
Reflowable E-Book
Kopierschutz:
Adobe DRM [Hard-DRM]
Sprache:
Englisch
Beschreibung:

The field of organic electronics has seen a steady growth over the last 15 years. At the same time, our scientific understanding of how to achieve optimum device performance has grown, and this book gives an overview of our present-day knowledge of the physics behind organic semiconductor devices. Based on the very successful first edition, the editors have invited top scientists from the US, Japan, and Europe to include the developments from recent years, covering such fundamental issues as: - growth and characterization of thin films of organic semiconductors, - charge transport and photophysical properties of the materials as well as their electronic structure at interfaces, and - analysis and modeling of devices like organic light-emitting diodes or organic lasers. The result is an overview of the field for both readers with basic knowledge and for an application-oriented audience. It thus bridges the gap between textbook knowledge largely based on crystalline molecular solids and those books focusing more on device applications.
The field of organic electronics has seen a steady growth over the last 15 years. At the same time, our scientific understanding of how to achieve optimum device performance has grown, and this book gives an overview of our present-day knowledge of the physics behind organic semiconductor devices. Based on the very successful first edition, the editors have invited top scientists from the US, Japan, and Europe to include the developments from recent years, covering such fundamental issues as: growth and characterization of thin films of organic semiconductors charge transport and photophysical properties of the materials as well as their electronic structure at interfaces, and analysis and modeling of devices like organic light-emitting diodes or organic lasers.The result is an overview of the field for both readers with basic knowledge and for an application-oriented audience. It thus bridges the gap between textbook knowledge largely based on crystalline molecular solids and those books focusing more on device applications.
Foreword (R.H. Friend)Preface (W. Brütting, C. Adachi)FILM GROWTH, ELECTRONIC STRUCTURE AND INTERFACES1 Organic molecular beam deposition (F. Schreiber, Tübingen Univ., Germany)2 Electronic structure of interfaces with conjugated organic materials (N. Koch, HU Berlin, Germany)3 Electronic structure of molecular solids: Bridge to the electrical conduction (N. Ueno, Chiba Univ., Japan)4 Interfacial doping for efficient charge injection (J.J. Kim, Seoul National Univ., South Korea)5 Displacement current measurement for exploring charge carrier dynamics in organic semiconductor devices (Y. Noguchi, Y. Tanaka, Y. Miyazaki, N. Sato, Y. Nakayama, H. Ishii, Chiba Univ., Japan)CHARGE TRANSPORT6 Effects of Gaussian disorder on charge carrier transport and recombination in organic semiconductors (R. Coehoorn, P.A. Bobbert, Philips Research & Eindhoven Univ. Techn., The Netherlands)7 Charge transport physics of high mobility molecular semiconductors (H. Sirringhaus, T. Sakanoue, J.-F. Chang, Univ. Cambridge, U.K.)8 Ambipolar charge carrier transport in molecular field-effect transistors (A. Opitz, W. Brütting, Augsburg Univ., Germany)9 Organic magnetoresistance (M. Wohlgenannt, Univ. Iowa, U.S.A.)PHOTOPHYSICS10 Excitons at polymer interfaces (N. Greenham, Univ. Cambridge, U.K.)11 Electronic processes at organic semiconductor heterojunctions: The mechanism of exciton dissociation in semicrystalline solid-state microstructures (F. Paquin, G. Latini, M. Sakowicz, P.-L. Karsenti, L. Wang, D. Beljonne, N. Stingelin, C. Silva, Univ. Montreal, Canada & Imperial College London, U.K.)12 Recent progress in the understanding of exciton dynamics within phosphorescentOLEDs (S. Reineke, M. Baldo, MIT, U.S.A.)13 Organometallic Emitters for OLEDs. Triplet Harvesting, Singlet Harvesting, Case Structures, and Trends (H. Yersin, Regensburg Univ., Germany)DEVICE PHYSICS14 Doping of organic semiconductors (B. Lüssem, M. Riede, K. Leo, Dresden Univ., Germany)15 Device efficiency of organic LEDs (W. Brütting, J. Frischeisen, Augsburg Univ., Germany)16 Light outcoupling in organic LEDs (C.-H. Tsai, C.-C. Wu, National Taiwan Univ., Taiwan)17 Photogeneration and Recombination in Polymer Solar Cells (C. Deibel, A. Baumann, V. Dyakonov, Würzburg Univ., Germany)18 Light-emitting organic crystal field-effect transistors for future organic injection lasers (H. Nakanotani, C. Adachi, Kyushu Univ., Japan)

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.