Der Artikel ist weiterhin als ^^OTHERCONDITION^^ verfügbar.
Autor: Gert Böhme
ISBN-13: 9783540528289
Einband: Book
Seiten: 508
Gewicht: 839 g
Format: 200x164x20 mm
Sprache: Deutsch

Analysis 1

Anwendungsorientierte Mathematik. Funktionen, Differentialrechnung
Geben Sie Ihre Bewertung ab!  
Wir verlosen jeden Monat unter allen freigegebenen Rezensionen
3 Gutscheine im Wert von 20 Euro. Teilnahmebedingungen
99
1. Elementare reelle Funktionen.- 1.1 Grundlagen.- 1.1.1 Der reelle Zahlenkörper.- 1.1.2 Der binomische Satz.- 1.1.3 Ungleichungen.- 1.1.4 Der absolute Betrag.- 1.2 Reelle Funktionen.- 1.2.1 Begriff. Darstellungsformen.- 1.2.2 Symmetrieeigenschaften.- 1.2.3 Kongruente Verschiebung. Affine Stauchung.- 1.2.4 Schranken. Nullstellen.- 1.2.5 Umkehrfunktionen.- 1.3 Polynome.- 1.3.1 Polynombegriff. Polynomwerte. Polynom Verknüpfungen.- 1.3.2 PolynomumOrdnung. Vollständiges Horner-Schema.- 1.3.3 Polynomgleichungen: Lösungen.- 1.3.4 Polynomgleichungen: Lösungsverfahren.- 1.3.5 Interpolationspolynome.- 1.3.6 Stellenwertsysteme.- 1.4 Gebrochen-rationale Funktionen.- 1.4.1 Charakteristische Merkmale.- 1.4.2 Partialbruchzerlegung von Polynombrüchen.- 1.5 Algebraische Funktionen.- 1.6 Kreis-und Bogenfunktionen.- 1.7 Exponential- und Logarithmusfunktionen.- 1.8 Hyperbel-und Areafunktionen.- 1.9 Funktionspapiere.- 2. Komplexwertige Funktionen.- 2.1 Einführung.- 2.2 Die komplexe Gerade.- 2.3 Die Inversion der Geraden.- 2.4 Der Allgemeine Kreis.- 3. Differentialrechnung.- 3.1 Grenzwerte.- 3.1.1 Konvergente Zahlenfolgen.- 3.1.2 Grenzwerte von Funktionen.- 3.1.3 Stetigkeit von Funktionen.- 3.2 Der Begriff der Ableitungsfunktion.- 3.2.1 Die Ableitungsfunktion als Steigungsfunktion.- 3.2.2 Die Ableitung als Grenzwert.- 3.2.3 Bestimmung von Ableitungsfunktionen.- 3.3 Formale Ableitungsrechnung.- 3.3.1 Konstanten-, Faktor-und Summenregel.- 3.3.2 Die Potenzregel für ganze positive Exponenten.- 3.3.3 Produkt-und Quotientenregel.- 3.3.4 Ableitungen höherer Ordnung.- 3.3.5 Die Kettenregel.- 3.3.6 Ableitung der Kreisfunktionen.- 3.3.7 Ableitung der Bogenfunktionen.- 3.3.8 Ableitung von Logarithmus-und Exponentialfunktion.- 3.3.9 Logarithmisches Ableiten.- 3.3.10 Ableitung der Hyperbel- und Areafunktionen.- 3.4 Differentiale. Differentialquotienten. Differentialoperatoren.- 3.4.1 Der Begriff des Differentials.- 3.4.2 Rechnen mit Differentialen.- 3.4.3 Der Differentialquotient.- 3.4.4 Differentialoperatoren.- 3.5 Kurvenuntersuchungen.- 3.5.1 Steigen und Fallen. Extrempunkte.- 3.5.2 Links-und Rechtskurven. Wendepunkte.- 3.5.3 Sonstige geometrische Eigenschaften.- 3.5.4 Untersuchung algebraischer Funktionen.- 3.5.5 Untersuchung transzendenter Funktionen.- 3.5.6 Angewandte Maxima-und Minimaaufgaben.- 3.6 Weitere Anwendungen der Differentialrechnung.- 3.6.1 Tangenten und Tangentenabschnitte.- 3.6.2 Linearisierung von Funktionen.- 3.6.3 Der Mittelwertsatz.- 3.6.4 Grenzwertbestimmung mit der Regel von Bernoulli und de l'Hospital.- 3.6.5 Das Newtonsche Iterationsverfahren.- 3.7 Funktionen von zwei reellen Veränderlichen.- 3.7.1 Der Funktionsbegriff.- 3.7.2 Analytische Darstellungsformen.- 3.7.3 Geometrische Darstellungsformen.- 3.7.4 Skalare Darstellung durch Leitertafeln.- 3.7.5 Raumkurven.- 3.7.6 Partielle Ableitungen.- 3.7.7 Das totale (vollständige) Differential.- 3.7.8 Ableitung impliziter Funktionen.- 3.7.9 Ableiten von Parameter dar Stellungen.- 3.7.10 Ableiten von Vektorfunktionen.- 3.7.11 Krümmungskreise und Schmiegungsparabeln.- 3.7.12 Ableiten von Funktionen in Polarkoordinaten.- 4. Anhang: Lösungen der Aufgaben.
Behandelt wird die "klassische" Analysis so breit und ausführlich, wie sie der spätere Anwender, der Ingenieur, Informatiker oder Wirtschaftswissenschaftler im Berufsleben benötigt: Elementare reelle Funktionen, komplexwertige Funktionen (Ortskurven), Differentialrechnung für Funktionen einer oder zweier Veränderlicher und deren Anwendung. Das Lehrbuch entspricht den Erfordernissen zum Gebrauch neben Servicevorlesungen an TU, TH und FH, zeichnet sich darüberhinaus durch sein anwendungsorientiertes, etwas breiter angelegtes Konzept aus und ist für das Selbststudium geeignet. Methodische und anschauliche Beschreibungen stehen im Vordergrund; das Maß an Abstraktion ist bewußt gering gehalten. Learning-by-doing wird erleichtert durch Übungsaufgaben mit vollständigen Lösungen.

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.

 

Rezensionen

Autor: Gert Böhme
ISBN-13 :: 9783540528289
ISBN: 3540528288
Erscheinungsjahr: 19.09.1990
Verlag: Springer Berlin Heidelberg
Gewicht: 839g
Seiten: 508
Sprache: Deutsch
Auflage 90006, 6. Aufl
Sonstiges: Taschenbuch, 200x164x20 mm