Media Theory
- 0 %
Der Artikel wird am Ende des Bestellprozesses zum Download zur Verfügung gestellt.

Media Theory

Interdisciplinary Applied Mathematics
 eBook
Sofort lieferbar | Lieferzeit: Sofort lieferbar I
ISBN-13:
9783540716976
Veröffentl:
2007
Einband:
eBook
Seiten:
328
Autor:
David Eppstein
eBook Typ:
PDF
eBook Format:
Reflowable eBook
Kopierschutz:
Digital Watermark [Social-DRM]
Sprache:
Englisch
Beschreibung:

The focus of this book is a mathematical structure modeling a physical or biological system that can be in any of a number of 'states. ' Each state is characterized by a set of binary features, and di?ers from some other nei- bor state or states by just one of those features. In some situations, what distinguishes a state S from a neighbor state T is that S has a particular f- ture that T does not have. A familiar example is a partial solution of a jigsaw puzzle, with adjoining pieces. Such a state can be transformed into another state, that is, another partial solution or the ?nal solution, just by adding a single adjoining piece. This is the ?rst example discussed in Chapter 1. In other situations, the di?erence between a state S and a neighbor state T may reside in their location in a space, as in our second example, in which in which S and T are regions located on di?erent sides of some common border. We formalize the mathematical structure as a semigroup of 'messages' transforming states into other states. Each of these messages is produced by the concatenation of elementary transformations called 'tokens (of infor- tion). ' The structure is speci?ed by two constraining axioms. One states that any state can be produced from any other state by an appropriate kind of message. The other axiom guarantees that such a production of states from other states satis?es a consistency requirement.
The focus of this book is a mathematical structure modeling a physical or biological system that can be in any of a number of ‘states. ’ Each state is characterized by a set of binary features, and di?ers from some other nei- bor state or states by just one of those features. In some situations, what distinguishes a state S from a neighbor state T is that S has a particular f- ture that T does not have. A familiar example is a partial solution of a jigsaw puzzle, with adjoining pieces. Such a state can be transformed into another state, that is, another partial solution or the ?nal solution, just by adding a single adjoining piece. This is the ?rst example discussed in Chapter 1. In other situations, the di?erence between a state S and a neighbor state T may reside in their location in a space, as in our second example, in which in which S and T are regions located on di?erent sides of some common border. We formalize the mathematical structure as a semigroup of ‘messages’ transforming states into other states. Each of these messages is produced by the concatenation of elementary transformations called ‘tokens (of infor- tion). ’ The structure is speci?ed by two constraining axioms. One states that any state can be produced from any other state by an appropriate kind of message. The other axiom guarantees that such a production of states from other states satis?es a consistency requirement.
Examples and Preliminaries.- Basic Concepts.- Media and Well-graded Families.- Closed Media and ?-Closed Families.- Well-Graded Families of Relations.- Mediatic Graphs.- Media and Partial Cubes.- Media and Integer Lattices.- Hyperplane arrangements and their media.- Algorithms.- Visualization of Media.- Random Walks on Media.- Applications.
The focus of this book is a mathematical structure modeling a physical or biological system that can be in any of a number of ‘states. ’ Each state is characterized by a set of binary features, and di?ers from some other nei- bor state or states by just one of those features. In some situations, what distinguishes a state S from a neighbor state T is that S has a particular f- ture that T does not have. A familiar example is a partial solution of a jigsaw puzzle, with adjoining pieces. Such a state can be transformed into another state, that is, another partial solution or the ?nal solution, just by adding a single adjoining piece. This is the ?rst example discussed in Chapter 1. In other situations, the di?erence between a state S and a neighbor state T may reside in their location in a space, as in our second example, in which in which S and T are regions located on di?erent sides of some common border. We formalize the mathematical structure as a semigroup of ‘messages’ transforming states into other states. Each of these messages is produced by the concatenation of elementary transformations called ‘tokens (of infor- tion). ’ The structure is speci?ed by two constraining axioms. One states that any state can be produced from any other state by an appropriate kind of message. The other axiom guarantees that such a production of states from other states satis?es a consistency requirement.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.