Numerical Simulation of Turbulent Flows and Noise Generation
- 0 %
Der Artikel wird am Ende des Bestellprozesses zum Download zur Verfügung gestellt.

Numerical Simulation of Turbulent Flows and Noise Generation

Results of the DFG/CNRS Research Groups FOR 507 and FOR 508
 eBook
Sofort lieferbar | Lieferzeit: Sofort lieferbar I
ISBN-13:
9783540899563
Veröffentl:
2009
Einband:
eBook
Seiten:
342
Autor:
W. Schröder
Serie:
104, Notes on Numerical Fluid Mechanics and Multidisciplinary Design
eBook Typ:
PDF
eBook Format:
Reflowable eBook
Kopierschutz:
Digital Watermark [Social-DRM]
Sprache:
Englisch
Beschreibung:

Large Eddy Simulation is a high-fidelity approach to the numerical simulation of turbulent flows. This book, based on recent research in LES simulations, provides insights into modern prediction approaches for turbulent flows and noise generation mechanisms.

Large Eddy Simulation (LES) is a high-fidelity approach to the numerical simulation of turbulent flows. Recent developments have shown LES to be able to predict aerodynamic noise generation and propagation as well as the turbulent flow, by means of either a hybrid or a direct approach.

This book is based on the results of two French/German research groups working on LES simulations in complex geometries and noise generation in turbulent flows. The results provide insights into modern prediction approaches for turbulent flows and noise generation mechanisms as well as their use for novel noise reduction concepts.

Noise Generation in Turbulent Flows.- Reduced-Order Modelling of Turbulent Jets for Noise Control.- Numerical Simulation of Supersonic Jet Noise.- Fluid-Acoustic Coupling and Wave Propagation.- Mechanisms and Active Control of Jet-Induced Noise.- Noise Prediction for Turbulent Coaxial Jets.- Numerical Simulation of Jet Mixing Noise Associated with Engine Exhausts.- LES of Complex Flows.- Implicit Turbulence Modeling by Finite Volume Methods.- Numerical Simulation of Turbulent Flows in Complex Geometries Using the Coherent Vortex Simulation Approach Based on Orthonormal Wavelet Decomposition.- Hybrid LES–RANS-Coupling for Complex Flows with Separation.- Segregated LES/RANS Coupling Conditions for the Simulation of Complex Turbulent Flows.- LES, Zonal and Seamless Hybrid LES/RANS: Rationale and Application to Free and Wall-Bounded Flows Involving Separation and Swirl.- Wall Scaling and Wall Models for Complex Turbulent Flows.- High-Order Methods for Large-Eddy Simulation in Complex Geometries.

Large Eddy Simulation (LES) is a high-fidelity approach to the numerical simulation of turbulent flows. Recent developments have shown LES to be able to predict aerodynamic noise generation and propagation as well as the turbulent flow, by means of either a hybrid or a direct approach.

This book is based on the results of two French/German research groups working on LES simulations in complex geometries and noise generation in turbulent flows. The results provide insights into modern prediction approaches for turbulent flows and noise generation mechanisms as well as their use for novel noise reduction concepts.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.