Thermoelectric Power in Nanostructured Materials
- 0 %
Der Artikel wird am Ende des Bestellprozesses zum Download zur Verfügung gestellt.

Thermoelectric Power in Nanostructured Materials

Strong Magnetic Fields
 eBook
Sofort lieferbar | Lieferzeit: Sofort lieferbar I
ISBN-13:
9783642105715
Veröffentl:
2010
Einband:
eBook
Seiten:
393
Autor:
Kamakhya Prasad Ghatak
Serie:
137, Springer Series in Materials Science
eBook Typ:
PDF
eBook Format:
Reflowable eBook
Kopierschutz:
Digital Watermark [Social-DRM]
Sprache:
Englisch
Beschreibung:

This is the first monograph which solely investigates the thermoelectric power in nanostrcutured materials under strong magnetic field (TPSM) in quantum confined nonlinear optical, III-V, II-VI, n-GaP, n-Ge, Te, Graphite, PtSb2, zerogap, II-V, Gallium Antimonide, stressed materials, Bismuth, IV-VI, lead germanium telluride, Zinc and Cadmium diphosphides, Bi2Te3, Antimony and carbon nanotubes, III-V, II-VI, IV-VI and HgTe/CdTe superlattices with graded interfaces and effective mass superlattices under magnetic quantization, the quantum wires and dots of the aforementiond superlattices by formulating the approprate respective carrier energy spectra which in turn control the quantum processes in quantum effect devices. The TPSM in macro, quantum wire and quantum dot superlattices of optoelectronic materials in the presence of external photo-excitation have also been studied on the basis of newly formulated electron dispersion laws. This monograph contains 150 open research problems which form the very core and are useful for PhD students and researchers in the fields of materials science, solid-state sciences, computational and theoretical nanoscience and technology, nanostructured thermodynamics and condensed matter physics in general in addition to the graduate courses on modern thermoelectric materials in various academic departments of many institutes and universities.
This is the first monograph which solely investigates the thermoelectric power in nanostrcutured materials under strong magnetic field (TPSM) in quantum confined nonlinear optical, III-V, II-VI, n-GaP, n-Ge, Te, Graphite, PtSb2, zerogap, II-V, Gallium Antimonide, stressed materials, Bismuth, IV-VI, lead germanium telluride, Zinc and Cadmium diphosphides, Bi2Te3, Antimony and carbon nanotubes, III-V, II-VI, IV-VI and HgTe/CdTe superlattices with graded interfaces and effective mass superlattices under magnetic quantization, the quantum wires and dots of the aforementiond superlattices by formulating the approprate respective carrier energy spectra which in turn control the quantum processes in quantum effect devices. The TPSM in macro, quantum wire and quantum dot superlattices of optoelectronic materials in the presence of external photo-excitation have also been studied on the basis of newly formulated electron dispersion laws. This monograph contains 150 open research problems which form the very core and are useful for PhD students and researchers in the fields of materials science, solid-state sciences, computational and theoretical nanoscience and technology, nanostructured thermodynamics and condensed matter physics in general in addition to the graduate courses on modern thermoelectric materials in various academic departments of many institutes and universities.
Thermoelectric power under large magnetic field in quantum confined materials.- Thermoelectric Power in Quantum Dots Under Large Magnetic Field.- Thermoelectric Power in Ultrathin Films and Quantum Wires Under Large Magnetic Field.- Thermoelectric Power in Quantum Dot Superlattices Under Large Magnetic Field.- Thermoelectric Power in Quantum Wire Superlattices Under Large Magnetic Field.- Thermoelectric power under magnetic quantization in macro and micro electronic materials.- Thermoelectric Power in Macroelectronic Materials Under Magnetic Quantization.- Thermoelectric Power in Superlattices Under Magnetic Quantization.- Thermoelectric Power in Ultrathin Films Under Magnetic Quantization.- Thermoelectric power under large magnetic field in quantum confined optoelectronic materials in the presence of light waves.- Optothermoelectric Power in Ultrathin Films and Quantum Wires of Optoelectronic Materials Under Large Magnetic Field.- Optothermoelectric Power in Quantum Dots of Optoelectronic Materials Under Large Magnetic Field.- Optothermoelectric Power in Quantum-Confined Semiconductor Superlattices of Optoelectronic Materials Under Large Magnetic Field.- Thermoelectric power under magnetic quantization in macro and micro optoelectronic materials in the presence of light waves.- Optothermoelectric Power in Macro-Optoelectronic Materials Under Magnetic Quantization.- Optothermoelectric Power in Ultrathin Films of Optoelectronic Materials Under Magnetic Quantization.- Optothermoelectric Power in Superlattices of Optoelectronic Materials Under Magnetic Quantization.- Applications and Brief Review of Experimental Results.- Conclusion and Future Research.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.