Chemistry of Nanomolecular Systems
- 0 %
Der Artikel wird am Ende des Bestellprozesses zum Download zur Verfügung gestellt.

Chemistry of Nanomolecular Systems

Towards the Realization of Molecular Devices
 PDF
Sofort lieferbar | Lieferzeit: Sofort lieferbar I
ISBN-13:
9783662052501
Veröffentl:
2013
Einband:
PDF
Seiten:
197
Autor:
Takuya Matsumoto
Serie:
Springer Series in Chemical Physics
eBook Typ:
PDF
eBook Format:
PDF
Kopierschutz:
Adobe DRM [Hard-DRM]
Sprache:
Englisch
Beschreibung:

Recently, molecular electronics, especially that utilizing single molecules, has been attracting much attention. This is mainly because the theoretical limit is approaching in the present silicon-based technology, and the development of an alternative process is strongly desired. Single-molecule electronics is aimed at a breakthrough toward the next generation of computing systems. By designing and synthesizing highly functionalized molecules of nanometer size and incorporating these molecules into electrical circuits, we shall obtain much dense and high-speed processors. The concept of single-molecule electronics was first introduced by Aviram and Ratnar in 1978. In the early 1980s, many groups all over the world had started research on molecular electronics. At that time, single-molecule manipulation techniques had not been born, and the research was mainly carried out on molecular films formed by the Langmuir~Blodgett technique, a wet process, and by molecular-beam epitaxy, a dry process. A number of prototypes of switching devices and logic gates were, however, reported in the 1980s. In the early 1990s, scanning probe microscopes became popular and researchers obtained a single-molecule manipulation and evaluation tech- nique. It became possible to fabricate practical devices using single molecules or small numbers of molecules. Finally, at the end of the last century, an explosion in the research field of single-molecule electronics was witnessed. In addition, studies of "e;biocomputing"e; started in the early 1980s and significant progress was achieved in the last century.
Recently, molecular electronics, especially that utilizing single molecules, has been attracting much attention. This is mainly because the theoretical limit is approaching in the present silicon-based technology, and the development of an alternative process is strongly desired. Single-molecule electronics is aimed at a breakthrough toward the next generation of computing systems. By designing and synthesizing highly functionalized molecules of nanometer size and incorporating these molecules into electrical circuits, we shall obtain much dense and high-speed processors. The concept of single-molecule electronics was first introduced by Aviram and Ratnar in 1978. In the early 1980s, many groups all over the world had started research on molecular electronics. At that time, single-molecule manipulation techniques had not been born, and the research was mainly carried out on molecular films formed by the Langmuir~Blodgett technique, a wet process, and by molecular-beam epitaxy, a dry process. A number of prototypes of switching devices and logic gates were, however, reported in the 1980s. In the early 1990s, scanning probe microscopes became popular and researchers obtained a single-molecule manipulation and evaluation tech- nique. It became possible to fabricate practical devices using single molecules or small numbers of molecules. Finally, at the end of the last century, an explosion in the research field of single-molecule electronics was witnessed. In addition, studies of "e;biocomputing"e; started in the early 1980s and significant progress was achieved in the last century.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.