Der Artikel wird am Ende des Bestellprozesses zum Download zur Verfügung gestellt.

Funktionentheorie

 PDF
Sofort lieferbar | Lieferzeit: Sofort lieferbar I
ISBN-13:
9783662073506
Veröffentl:
2013
Einband:
PDF
Seiten:
477
Autor:
Rolf Busam
Serie:
Springer-Lehrbuch
eBook Typ:
PDF
eBook Format:
PDF
Kopierschutz:
Adobe DRM [Hard-DRM]
Sprache:
Deutsch
Beschreibung:

Die komplexen Zahlen haben ihre historischen Wurzeln im 16. Jahrhundert, sie entstanden bei dem Versuch, algebraische Gleichungen zu lösen. So führte schon G. CARDANO (1545) formale Ausdrücke wie zum Beispiel 5 ± V-15 ein, um Lösungen quadratischer und kubischer Gleichungen angeben zu können. R. BOMBELLI rechnete um 1560 bereits systematisch mit diesen Ausdrücken 3 und fand 4 als Lösung der Gleichung x = 15x + 4 in der verschlüsselten Form 4 = ~2 + V-121 + ~2 - V-121. Auch bei G. W. LEIBNIZ (1675) findet man Gleichungen dieser Art, wie z.B. J 1 + V-3 + J 1 - V-3 = v6. Im Jahre 1777 führte L. EULER die Bezeichnung i = yCI für die imaginäre Einheit ein. Der Fachausdruck "komplexe Zahl" stammt von C. F. GAUSS (1831). Die strenge Einführung der komplexen Zahlen als Paare reeller Zahlen geht auf W. R. HAMILTON (1837) zurück. Schon in der reellen Analysis ist es gelegentlich vorteilhaft, komplexe Zahlen einzuführen. Man denke beispielsweise an die Integration rationaler Funktio­ nen, die auf der Partialbruchentwicklung und damit auf dem Fundamentalsatz der Algebra beruht: Über dem Körper der komplexen Zahlen zerfällt jedes Polynom in ein Produkt von Linearfaktoren.
Die komplexen Zahlen haben ihre historischen Wurzeln im 16. Jahrhundert, sie entstanden bei dem Versuch, algebraische Gleichungen zu lösen. So führte schon G. CARDANO (1545) formale Ausdrücke wie zum Beispiel 5 ± V-15 ein, um Lösungen quadratischer und kubischer Gleichungen angeben zu können. R. BOMBELLI rechnete um 1560 bereits systematisch mit diesen Ausdrücken 3 und fand 4 als Lösung der Gleichung x = 15x + 4 in der verschlüsselten Form 4 = ~2 + V-121 + ~2 - V-121. Auch bei G. W. LEIBNIZ (1675) findet man Gleichungen dieser Art, wie z.B. J 1 + V-3 + J 1 - V-3 = v6. Im Jahre 1777 führte L. EULER die Bezeichnung i = yCI für die imaginäre Einheit ein. Der Fachausdruck "komplexe Zahl" stammt von C. F. GAUSS (1831). Die strenge Einführung der komplexen Zahlen als Paare reeller Zahlen geht auf W. R. HAMILTON (1837) zurück. Schon in der reellen Analysis ist es gelegentlich vorteilhaft, komplexe Zahlen einzuführen. Man denke beispielsweise an die Integration rationaler Funktio­ nen, die auf der Partialbruchentwicklung und damit auf dem Fundamentalsatz der Algebra beruht: Über dem Körper der komplexen Zahlen zerfällt jedes Polynom in ein Produkt von Linearfaktoren.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.